

Aula 06

Energia cinética e trabalho I

Sumário

Trabalho e Energia Cinética

Trabalho realizado pela Força Gravítica

Trabalho realizado pela Força de uma Mola

Trabalho realizado por uma Força Variável Geral

Potência

Trabalho

O trabalho, W, efectuado num sistema por um agente que exerce uma força constante sobre o sistema é o produto do módulo da força, $\left| ec{F}
ight|$, do módulo do deslocamento, $|\Delta \vec{r}|$, do ponto de aplicação da força, e de $\cos q$, em que q é o ângulo entre os vectores força e deslocamento

$$W = |\vec{F}| |\Delta \vec{r}| \cos \theta = F \Delta r \cos \theta$$

Trabalho

O deslocamento é o do ponto de aplicação da força;

A força não realiza trabalho sobre o corpo se não existe deslocamento do ponto de aplicação;

O trabalho realizado por uma força sobre um corpo que se move é nulo quando a força aplicada é perpendicular ao deslocamento do seu ponto de aplicação:

$$W = |\vec{F}| |\Delta \vec{r}| \cos \theta = F \Delta r \cos \theta$$

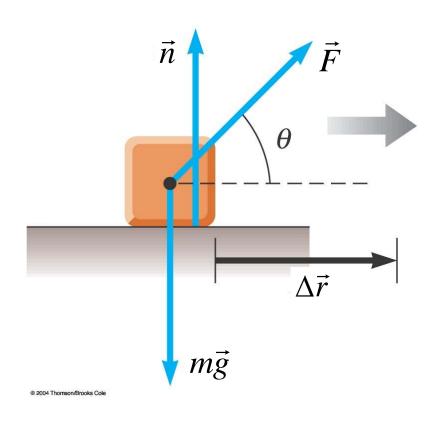
Trabalho – Exemplo

A força normal, \vec{n} , e a força gravítica, $m\vec{g}$, não efectuam trabalho sobre o corpo

$$\cos \theta = \cos 90^{\circ} = 0$$

A força \vec{F} realiza trabalho sobre o objecto, quando este se desloca de $\Delta \vec{r}$

$$W_F = \left| \vec{F} \right| \left| \Delta \vec{r} \right| \cos \theta$$



Trabalho

Tanto o sistema e o ambiente têm que ser determinados quando lidamos com trabalho

O trabalho é efectuado **pelo** ambiente **sobre** o sistema

O sinal que afecta o trabalho depende da direcção e sentido de \vec{F} relativamente a $\Delta \vec{r}$

O trabalho é positivo quando a projecção de \vec{F} em $\Delta \vec{r}$ tem o sentido do deslocamento

O trabalho é negativo quando a projecção tem o sentido oposto

Trabalho é Transferência de Energia

Este facto é muito importante na resolução de problemas;

Se é realizado trabalho *positivo sobre* um sistema, é transferida energia *para* o sistema;

Se o trabalho realizado sobre o sistema é *negativo*, é transferida energia *para fora* do sistema.

Trabalho é Transferência de Energia

Se um sistema interactua com o seu ambiente, essa interacção pode ser descrita como uma transferência de energia através da fronteira do sistema;

Daqui resultará uma variação da energia acumulada no sistema.

Unidades de Trabalho

Trabalho é uma grandeza escalar

A unidade SI de trabalho é o joule (J)

1 joule = 1 newton × 1 metro

 $J = N \cdot m$

Trabalho Realizado por uma Força Variável – movimento unidimensional

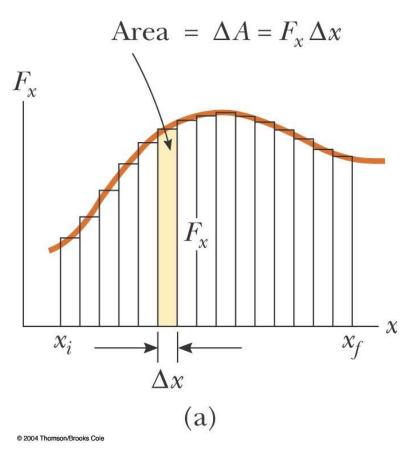
Supomos que durante um deslocamento muito pequeno, Δx , \vec{F} é constante

Para esse deslocamento,

$$W \sim F_x \Delta x$$

Se somarmos para todos os intervalos, obtemos

$$W \approx \sum_{x_i}^{x_f} F_x \Delta x$$



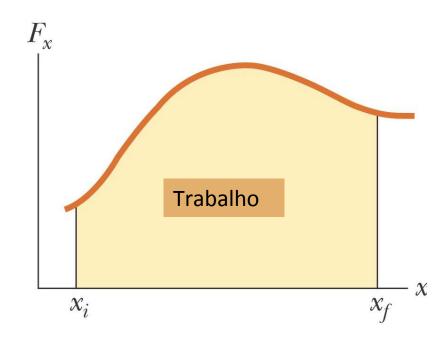
Trabalho Realizado por uma Força Variável

$$\lim_{\Delta x \to 0} \sum_{x_i}^{x_f} F_x \Delta x = \int_{x_i}^{x_f} F_x dx$$

Portanto,
$$W = \int_{x_i}^{x_f} F_x dx$$

O trabalho realizado é igual à área da superfície limitada pela curva:

No caso geral: $W = \int_{\vec{r}}^{\prime_f} \vec{F} \cdot d\vec{r}$



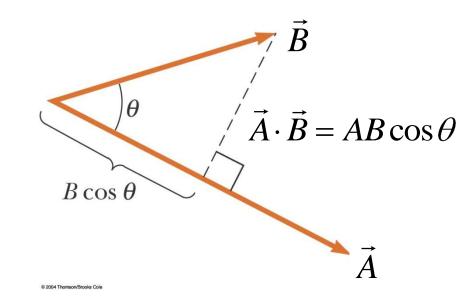
© 2004 Thomson/Brooks Cole

Produto Escalar de Dois Vectores

O produto interno ou escalar de dois vectores representa-se por:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = AB \cos \theta$$

heta é o ângulo entre \vec{A} e \vec{B}



Produto Escalar

O produto escalar é comutativo

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

O produto escalar é distributivo em relação à soma de vectores

$$\vec{A} \cdot \vec{B} + \vec{C} = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

Produto escalar de vectores unitários

Utilizando \vec{A} e \vec{B} em termos das componentes:

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$
$$\vec{i} \cdot \vec{j} = \vec{i} \cdot \vec{k} = \vec{j} \cdot \vec{k} = 0$$

$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$$

$$\vec{B} = B_x \vec{i} + B_y \vec{j} + B_z \vec{k}$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Trabalho realizado por Várias Forças – movimento unidimensional

Se mais do que uma força actua num sistema e o sistema pode ser considerado como uma partícula, o trabalho total realizado sobre o sistema é o trabalho realizado pela força resultante:

$$\sum W = W_{\text{resultante}} = \int \sum \vec{F} \cdot d\vec{r}$$

Para deslocamento segundo xx

$$\sum W = W_{\text{resultante}} = \int_{x_i}^{x_f} \sum F_x \ dx$$

Trabalho realizado por Várias Forças

Se o sistema não pode ser considerado como uma partícula, então o trabalho total realizado sobre o sistema é igual à soma algébrica do trabalho realizado por cada uma das forças

$$W_{
m total} = \sum W_{
m cada~força}$$

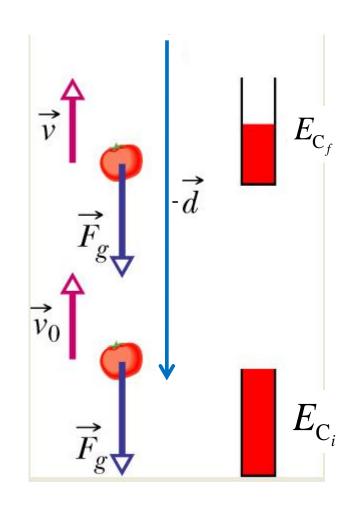
Trabalho realizado pela força gravítica

Um corpo é atirado para cima verticalmente com velocidade inicial \vec{v}_0 Durante a subida a força gravítica efectua trabalho sobre o corpo

$$W = \vec{F}_g \cdot \vec{d} = -mgd < 0$$

Após atingir a altura máxima, o trabalho efectuado pela força gravítica sobre o corpo no deslocamento até ao ponto de partida é

$$W = \vec{F}_g \cdot (-\vec{d}) = mgd > 0$$



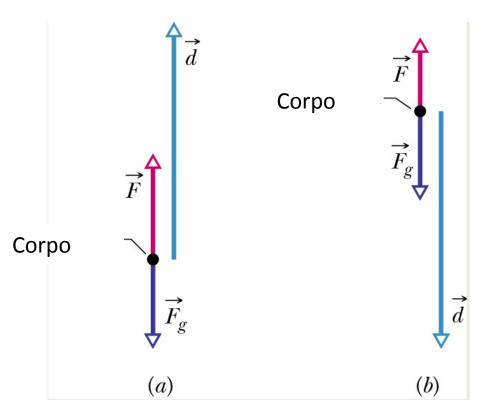
Trabalho para fazer subir e descer um corpo

Um agente exterior faz subir um corpo, por aplicação da força \vec{F}

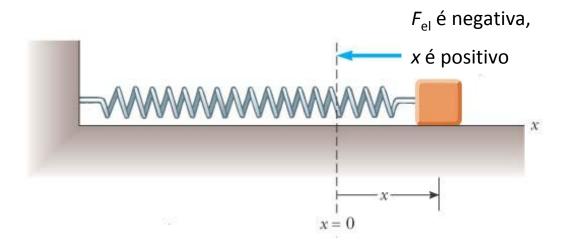
A força do agente exterior tende a transferir energia para o corpo, enquanto que a força gravítica tende a retirar energia ao corpo

Se movimento do corpo, ocorre com velocidade constante, então

$$W_F + W_g = 0 \quad \text{e} \quad W_F = -W_g$$



Lei de Hooke



A força exercida pela mola sobre o corpo é

$$F_{\rm el} = -kx$$

x é a posição do bloco em relação à posição de equilíbrio (x = 0)

k é a constante da mola e mede a resistência desta à distensão ou compressão

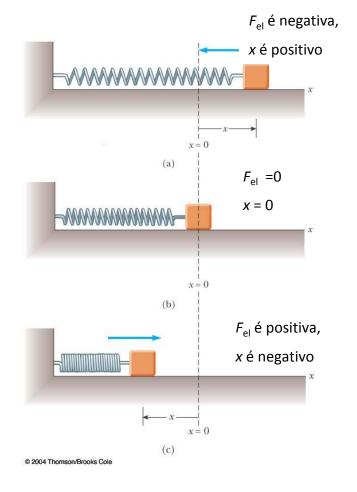
Esta equação exprime a Lei de Hooke

Lei de Hooke

Quando x é positivo (a mola está esticada), F_{el} é negativa

Quando $x \in 0$ (na posição de equilíbrio), $F_{el} \in 0$

Quando x é negativo (a mola está comprimida), $F_{\rm el}$ é positiva



Lei de Hooke

A força exercida pela mola é sempre oposta ac deslocamento em relação à posição de equilíbrio

 $ec{F}$ é denominada força de restauração

Se o bloco é largado na posição de coordenada x (e não existe atrito) oscilará entre as posições -x e +x

Trabalho realizado por uma mola

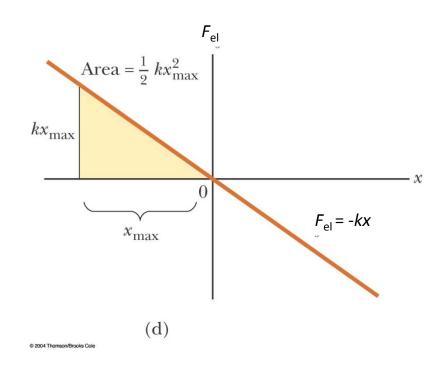
Identificamos o bloco como sendo o sistema

Calculamos o trabalho quando o bloco se move de x_i = - x_{max} até x_f = 0

$$W_s = \int_{x_i}^{x_f} F_x dx = \int_{-x_{\text{max}}}^{0} -kx \ dx = \frac{1}{2}kx_{\text{max}}^2$$

O trabalho total quando o bloco se desloca de

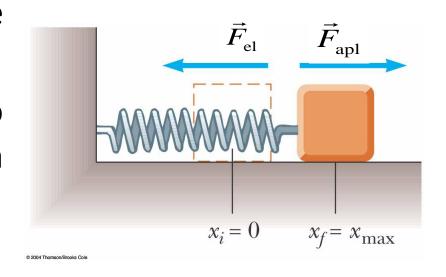
$$-x_{\text{max}}$$
 até x_{max} é nulo



Mola com uma força aplicada

Suponhamos que um agente externo, $\vec{F}_{\rm apl}$, estica a mola.

A força aplicada tem módulo igual e sentido oposto ao da força da mola



$$F_{\text{apl}} = -F_{\text{el}} = -(-kx) = kx$$

O trabalho realizado por F_{apl} é igual a $\frac{1}{2} kx^2_{max}$

Para um deslocamento de 0 a x arbitrário menor do que x_{max} , o trabalho realizado por F_{apl} é igual a $\frac{1}{2}kx^2$

Energia Cinética

Energia cinética é a energia de uma partícula associada ao seu movimento:

$$E_{\rm C} = \frac{1}{2}mv^2$$

 $E_{\rm c}$ é a energia cinética m é a massa da partícula v é o módulo da velocidade da partícula

A variação da energia cinética é um resultado possível do trabalho realizado para transferir energia para um sistema.

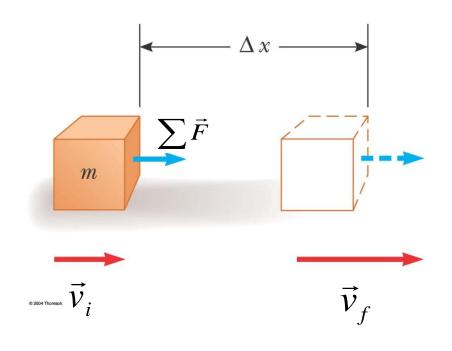
Energia Cinética

Calculamos o trabalho:

$$W = \int_{x_i}^{x_f} \sum F \, dx = \int_{x_i}^{x_f} ma \, dx$$

$$W = \int_{v_i}^{v_f} mv \, dv$$

$$\sum W = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$



Aula 06

Teorema do Trabalho-Energia ou da Energia Cinética

O teorema da energia cinética afirma:

No caso em que *a única alteração* no sistema é no módulo da sua velocidade, o trabalho realizado pela força resultante num determinado intervalo de tempo é igual à variação da energia cinética do sistema nesse intervalo de tempo.

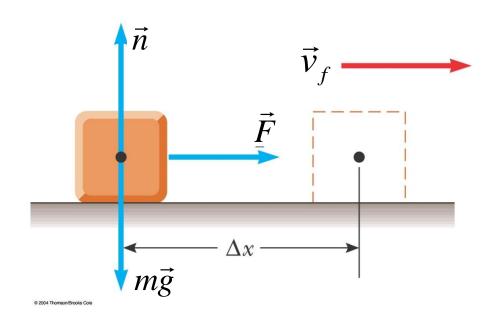
$$\sum W = E_{C_f} - E_{C_i} = \Delta E_{C}$$

Teorema do Trabalho-Energia – Exemplo

As forças normal e gravítica não realizam trabalho porque são perpendiculares à direcção do deslocamento.

$$W = F\Delta x$$

$$W = \Delta E_{\rm C} = \frac{1}{2}mv_f^2 - 0$$



Potência

A energia transferida por unidade de tempo é denominada *potência*;

A potência média no intervalo de tempo Δt é:

$$P_{ ext{ iny media}} = rac{W}{\Delta t}$$

quando o modo de transferência de energia é o trabalho.

W é o trabalho efectuado no mesmo intervalo de tempo.

Potência Instantânea

A *potência instantânea* é o valor limite da potência média quando Δt tende para zero;

Pode também ser escrita na forma:

$$P =_{\Delta t \to 0}^{\lim} \frac{W}{\Delta t} = \frac{dW}{dt}$$

$$P = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v} = Fv \cos \theta$$

Potência em Geral

A potência pode ser relacionada com qualquer tipo de transferência de energia;

De uma forma geral, a potência pode ser expressa como:

$$P = \frac{dE}{dt}$$

dE/dt é a energia por unidade de tempo que atravessa a fronteira do sistema por um determinado mecanismo de transferência.

Unidades de Potência

A unidade SI de potência é o watt;

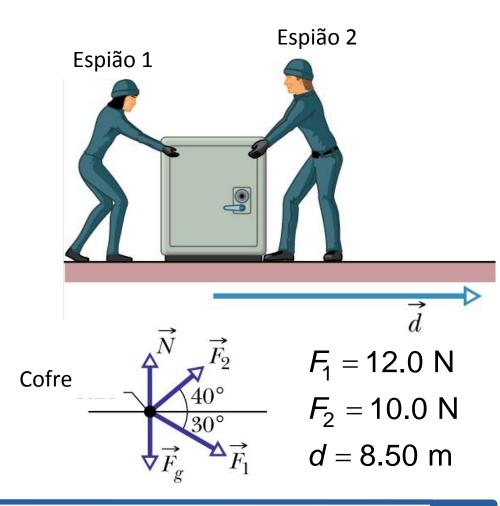
1 watt = 1 joule / segundo = $1 \text{ kg} \cdot \text{m}^2 / \text{s}^2$

As unidades de potência podem também ser utilizadas para exprimir unidades de trabalho ou energia:

1 kWh = $(1000 \text{ W})(3600 \text{ s}) = 3.6 \times 10^6 \text{ J}$ kilowatt-hora e *não kilowatt/hora*

Teorema do Trabalho-Energia – Problema

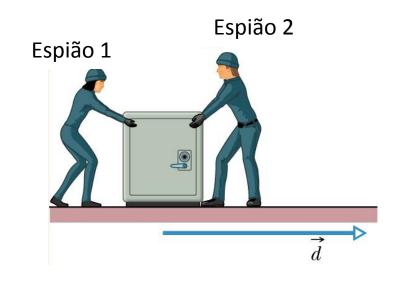
Dois espiões industriais deslocam de 8.50 m um cofre com massa de 225 kg, fazendo-o escorregar sobre uma superfície sem atrito. As forças que actuam no cofre estão indicadas no diagrama.

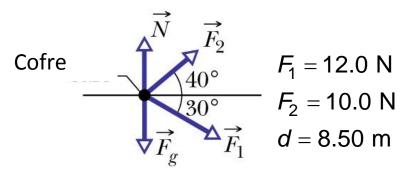


Teorema do Trabalho-Energia – Problema

a) Qual é o trabalho total realizado sobre o cofre pelas forças que nele actuam durante o deslocamento \vec{d} ?

b) O cofre estava inicialmente em repouso. Qual é o módulo da sua velocidade após o deslocamento de 8.50 m?





Teorema do Trabalho-Energia – Problema

Um objecto vai de A, onde tem uma velocidade indicada abaixo, para B sob a acção da força indicada abaixo. Determine o trabalho realizado pela força, pela definição e pelo teorema trabalho-energia cinética

$$\vec{F} = 2\vec{e}_x$$

$$\vec{v}_0 = 3\vec{e}_y$$

$$m = 1.0 \text{ kg}$$

$$W_{AB}$$
 = ?? A(0,0); B(1,3)m

$$W_{AB} = \vec{F} \cdot \Delta \vec{r}$$

$$W_{AB} = 2\vec{i}.(\vec{i} + 3\vec{j}) = 2J$$

$$\vec{v}_A = 3\vec{e}_v \qquad \vec{v}_B = ??$$

$$a_x = 2$$
 $a_y = 0$
 $v_x = 2t$
 $v_y = 3$
 $x = t^2$
 $y = 3t$

$$t = 1 s \qquad \Longrightarrow \quad \vec{v}_B = 2\vec{e}_x + 3\vec{e}_y$$

$$E_{cA} = 4.5 J$$
 $E_{cB} = 6.5 J$ $\Delta E_{c} = 2 J$